If it's not what You are looking for type in the equation solver your own equation and let us solve it.
230=-16t^2+150t
We move all terms to the left:
230-(-16t^2+150t)=0
We get rid of parentheses
16t^2-150t+230=0
a = 16; b = -150; c = +230;
Δ = b2-4ac
Δ = -1502-4·16·230
Δ = 7780
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{7780}=\sqrt{4*1945}=\sqrt{4}*\sqrt{1945}=2\sqrt{1945}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-150)-2\sqrt{1945}}{2*16}=\frac{150-2\sqrt{1945}}{32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-150)+2\sqrt{1945}}{2*16}=\frac{150+2\sqrt{1945}}{32} $
| 7x+25x-8=90 | | 3x+18=117 | | 7x+1/2x+9=4/5 | | -3y-7.8=-10.2 | | 6y-1.9=10.7 | | 5-9y=-22 | | -2(3v-4)=28 | | 4x+6+6x+6=52 | | 10-3x=25-2x | | 4-(2x+3)=7. | | 5x=09+2x | | (7y+4)/(y+2)=-4/3 | | x^2=5(x-1) | | 5×y=48 | | z–12=1 | | F(x)=2x⁵-6x³+8x⁵-5 | | 1.6=0.8m | | -17=-7x+4(x-5) | | x/9-7=5 | | 7z+3/3-2z=1/3 | | 1x+(-8)=5x-6 | | 2+1/4x=11 | | 4m=7+18m | | 5x-3=(x+5) | | F(x)=-6+6^2 | | 5m+24=51m+24 | | 10y-10y=-6-20 | | 5m+24=56m+24 | | 2y+4/3-5y=-2/5 | | 6+3i)(6−3i)= | | 7x-3/5x=2 | | F(x)=6-(6^2)-(5+2)-1 |